Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism.
نویسندگان
چکیده
OBJECTIVE Hyperglycemia is the main determinant of long-term diabetic complications, mainly through induction of oxidative stress. NAD(P)H oxidase is a major source of glucose-induced oxidative stress. In this study, we tested the hypothesis that rosiglitazone (RSG) is able to quench oxidative stress initiated by high glucose through prevention of NAD(P)H oxidase activation. METHODS AND RESULTS Intracellular ROS were measured using the fluoroprobe TEMPO-9-AC in HUVECs exposed to control (5 mmol/L) and moderately high (10 mmol/L) glucose concentrations. NAD(P)H oxidase and AMPK activities were determined by Western blot. We found that 10 mmol/L glucose increased significantly ROS production in comparison with 5 mmol/L glucose, and that this effect was completely abolished by RSG. Interestingly, inhibition of AMPK, but not PPARgamma, prevented this effect of RSG. AMPK phosphorylation by RSG was necessary for its ability to hamper NAD(P)H oxidase activation, which was indispensable for glucose-induced oxidative stress. Downstream of AMPK activation, RSG exerts antioxidative effects by inhibiting PKC. CONCLUSIONS This study demonstrates that RSG activates AMPK which, in turn, prevents hyperactivity of NAD(P)H oxidase induced by high glucose, possibly through PKC inhibition. Therefore, RSG protects endothelial cells against glucose-induced oxidative stress with an AMPK-dependent and a PPARgamma-independent mechanism.
منابع مشابه
Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.
OBJECTIVE Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. METHODS Production of reactiv...
متن کاملPPAR activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes
Bagi, Zsolt, Akos Koller, and Gabor Kaley. PPAR activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol 286: H742–H748, 2004. First published October 9, 2003; 10.1152/ajpheart.00718.2003.—We tested the hypothesis that shortterm treatment of mice with Type 2 diabetes mellitus (DM) with rosiglitazo...
متن کاملThe Role of Oxidative Stress in the Pathogenesis of Diabetic Vascular Complications
Oxidative stress has been paid increasing attention to as an important causative factor for diabetic vascular complications. Among possible various sources, accumulating evidence has indicated that NAD(P)H oxidase may be the most important source for reactive oxygen species production in diabetic vascular tissues. The mechanisms underlying activation and up-regulation of NAD(P)H oxidase has bee...
متن کاملMetformin reduces NAD(P)H oxidase activity in mouse cultured podocytes through purinergic dependent mechanism by increasing extracellular ATP concentration.
Hyperglycemia affects the functioning numbers of podocytes and leads to a gradual decline of renal function. The normalization of glucose level is a principle therapeutic goal in diabetic patients and metformin is a popular hypoglycemic drug used in type 2 diabetes mellitus. Metformin activates AMP-activated kinase (AMPK) and decreases NAD(P)H oxidase activity in podocytes leading to reduction ...
متن کاملDose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease.
OBJECTIVE Angiotensin II (Ang II)-mediated induction of vascular superoxide anion formation could contribute to the development of endothelial dysfunction, hypertension, and atherosclerosis. An NAD(P)H oxidase has been identified as a major endothelial source of superoxide anions. However, the molecular mechanism underlying the regulation of NAD(P)H oxidase activity in response to Ang II is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 27 12 شماره
صفحات -
تاریخ انتشار 2007